
ELLIOTT

Volume

Part

Section

Chapter

Chapter

PROGRAMMING INFORMATION

APPLIED PROGRAMMING

ALGOL MATRIX PACKAGE (ALMAT)

CON TENTS

TRODUCTION

1 Purpose...

.2 Configuration °

3 Form of Distribution

4 Method of Use

FUNCTIONS
2.1 Parameters on we

2.2 Summary of Procedures

2.2.1 MXDIFF .,.

2.2.2 MXSUM

2.2.3 MXCOPY

2.2.4 MXNEG

2.2.5 MXPROD

2.2.6 MXTRANS ..

2.2.7 SCPROD

2.2.8 MXQUOT

2.2.9 INVMX..

2.2.10 PRINTMX ..

2.2.11 PRINTCOL .

2.2.12 MXOUTPUT

2.2.13 READMX

Page

K
S

=

eS

=

N
R
O
U
N
A

BR

W
W
W
W
W
N
D

DW

Page (i)

(Issue 1)

903

EOwe

Chapter

Chapter

Chapter

Chapter

Page (ii)

(Issue 1)

TIME TAKEN

OPTIMISATION .

EXAMPLES
5.1 Example 1

5.2 Example 2

STORE USED

Page

12

903

2e.0. 2

Chapter 1: INTRODUCTION

1.1 Purpose

The Matrix package contains a set of procedures

which perform many of the standard operations of matrix arithmetic.

Each matrix to be operated on is held in a two dimensional real array.

1.2 Configuration

The minimum configuration is a basic 900 series

processor with 8192 word store.

On this minimum configuration about 5 of the large

procedures could be used together with a realistic sized program and

several 15 by 15 matrices. The largest matrix that could be inverted

on a basic 8192 word store is about 35 by 35.

On a 16384 word store the corresponding largest

matrix would be about 70 by 70.

1.3 Form of Distribution

ALMAT is distributed as a single source code tape

of procedures in 900 series Algol code. Not all the procedures will be

required for any one program, the unnecessary procedures should be

edited out.

1.4 Method of Use

The procedures should be incorporated into the

head of the user's Algol program, normally by an editing process

which removes unwanted procedures.

Page l

(Issue 1)

903
2.6. 2.

Chapter 2: FUNCTIONS

2.1 Parameters

The parameters of the routines are, in general, array

names. The vectors and matrices which are used as actual parameters

must have been declared in the main program as TWO-DIMENSIONAL arrays

with appropriate subscript bounds, e.g., A column - or row - vector A

should be declared as A [l:m, 1:1] or A [1:1, 1:m]-

The first parameter usually gives the array in which

the result of the operation is stored, and subsequent parameters specify the

operands. Storage space far results is allocated when the procedure is

called, the subscript bounds of the operands then being known. In general,

the procedures make all tests for compatibility etc., which are necessary

for the performance of the operation intended.

2.2 Summary of Procedures

Each procedure is described by specifying its

parameters and method of use in pseudo-Algol form.

Throughout this summary

A, Band C represent two-dimensional real arrays

(matrices)

x represents a real scalar, e€.g., a

matrix element

iand j represents integers used as suffices to

indicate particular array elements.

2.2.1 MXDIFF

Procedure MXDIFF (A) becomes: (B) minus: (C);

Array A, B, C;

Comment This procedure subtracts array C from

array B and stores the result in array A.

A may be the same as either B or C.

MXDIFF uses about 250 words of store.;

Page 2

(Issue 1)

2.2.2

Procedure

Array

Comment

2.2.3

Procedure

Array

Comment

2.2.4

Procedure

Array

Comment

2.2.5

Procedure

Array

Comment

2.2.6

Procedure

Array

MXSUM

MXSUM (A) becomes: (B) plus: (C);
A, B, G;
this procedure adds array B to array C

and stores the result in array A. A may

be the same as either B or C.

MXSUM uses about 250 words of store. 3

MXCOPY

MXCOPY (A) becomes: (B);
A, B;

this procedure which is used by mxquot

copies array B, the copy becoming array

A. MXCOPY uses about 180 words of

store. ;

MXNEG

MXNEG (A) becomes minus: (B);

A, B;

this procedure negates array B. The

result is stored in array A. Array A may

be the same as array B;

MXNEG uses about 190 words of store. ;

MXPROD

MXPROD (A) becomes: (B) times: (C);

A, B, CG;

this procedure forms the matrix product

of arrays Band C. The result is stored

in array A. A must not be the same

array as B or C. If the arrays are

incompatible the message ''mxprod error'

is displayed and the program is

terminated.

MXPROD uses about 420 words of store. ;

MXTRANS

MXTRANS (A) becomes transpose of;(B);

A, B;

Page 3

(Issue 1)

903

2.6. 2.

Page 4

(Issue 1)

Comment this procedure forms the transpose of

array B and stores the result in array A.

Array A may not be the same as array B.

If A and B are incompatible the message

‘%mxtrans error' is displayed and the

program is terminated.
MXTRANS uses about 280 words of store. ;

2.2.7 SCPROD

Procedure

Value

Comment

SCPROD (A) becomes A times the scalar:

(x);
x; real x; array A;

this procedure multipies array A by the

scalar x in situ.

SCPROD uses about 90 words of store. ;

2.2.8 MXQUOT

Procedure

Value

Comment

MXQUOT (B) becomes: (A) to minus one
times: (C);
A; array A, B,; CG;

this procedure which uses mxcopy solves

a set of simultaneous equations A* B=C

in one procedure call.

The method used is Gaussian elimination.

The solution array B has the same number

of rows and columns as the right hand

side, array C.

MXQUOT uses the procedures MXCOPY and

SOLVMX. Since the array A is called by

value an extra copy of A is made in store.

Where store is critical the procedure

SOLVMX may be used directly, saving

time and store space. SOLVMX (A, B)

solves A *X = B, placing the result in

B and overwriting the original values in A.

If at any stage the ratio of the new pivot to

the greatest pivot is less in magnitude

than 10-6, the following message is displayed:

MXQUOT: SINGULAR STAGECCSIZER PIVRATION

and WAIT is entered. It is possible to

continue but the results are unlikely to

contain any significant figures.

If the arrays are incompatible, the

message

MXQUOT ERROR

is displayed and the program is

terminated.

MXQUOT uses about 20 words of store

and the procedures MXCOPY and

SOLVMX. SOLVMX uses about 460
words and the procedures PERMROWS

and CROUT, which occupy about 700

words. ;

2.2.9 IN VMX

Procedure INVMX (A);
Array A;
Comment this procedure inverts the non-singular

array Ain situ. The program uses the

Gaussian elimination method, search-

ing for the maximum element in each

column and using these elements as

pivots. If at any stage the ratio of the

new pivot to the greatest pivot is less

in magnitude than 10-6, the following

message is displayed:

INVMX: SINGULAR STAGE SIZES PIVRATIO¥V

and a data wait is entered. It is
possible to continue, but the results

are unlikely to contain any correct

significant figures. Failure at the
first stage is specially distinguished.
If A is not square the message 'invmx
error'! is displayed and the program is

terminated.

INVMX uses about 630 words of store,

and the procedures PERMROWS and

CROUT. PERMROWS and CROUT use

about 700 words;

2.2.10 PRINTMX

Procedure PRINTMW (A);

Array A;

Page 5

(Issue 1)

903
2.6. 2.

be used:

Page 6

(Issue 1)

the format current when the procedure

is called.

The format is specified before the

procedure call, e.g.

punch (2)
prefix

freepoint (4)
printmx (A)

Each row is printed on a new line. No

row or column numbers are printed nor

is any facility included for the printing

of large matrices. PRINTMX uses

about 80 words of store. ;

In cases where the number of columns is too great for the

matrix to be printed on one level either of the following output procedures may

2.2.11

Procedure

Array

Comment

PRINTCOL

PRINTCOL (A);

A;
this procedure prints the array A by

columns. The elements of a column

are all output on the same line and each

column is output on a newline. The

format for printing is set before the

procedure is called. PRINTCOL uses

about 70 words of store.;

2.2.12 MXOUTPUT

Procedure

Value

MXOUTPUT (A, m, 2,);
m, n;

m, 0;

A;
this procedure prints the array A by

rows (see example) together with its

row and column numbers. The row

and column numbers are printed in the

format digits (3). If the array has so

many columns that it will not fit on the

available output sheet, then the

procedure will arrange for the array

to be output on more than one level

(see example)

903
Os Oy 2.

The parameters of the procedure are:-

A, a real array,

m, the number of characters available

across the output sheet and

n, the number of characters occupied by

each element of the array.
The format for printing elements of the

array is set by the programmer before

the procedure is called. From this n, the

number of characters per element, may

be calculated e. g.
freepoint (t): t + 2 characters are
required by each element.
aligned (r,s): r +s + 2 characters are
required by each element.

MXOUTPUT occupies about 230 words of

store and uses the procedures SPACES

(30 words);

2.2.13. READMX

Procedure

Array

Comment

READMX (A)

A;
this procedure reads any real number and

places the result in an element of the

matrix A. Successive elements are placed

in the same row of the matrix until the row

has been filled;

Reading takes place on the device current

when the procedure is called. The device

setting may be altered before readmx is

called. e.g. READER (3); READMX (B);

READMX occupies about 80 words of store.

Page 7

(Issue 1)

Chapter 3:

903
2.6.2.

TIME TAKEN

Some typical times are given below:

(Issue 1)

SIZE OF MATRIX: 5 BY 5 10 BY 10 20 BY 20

903

INVMX 10 sec. 55 sec. 5 min 30 sec.

MXPROD 4.5 sec. 32 sec. 3 min 42 sec.

MXSUM 2 sec. 6 sec. 22 sec.

SCPROD 0.5 sec. 2.5 sec. 9 sec.

905 l microsec

store

INVMX 1.1 sec. 6.2 sec. 36.7 sec.

MXPROD 0.5 sec. 3.6 sec. 24.7 sec.

MXSUM 222 msec. 667msec. 2.4 sec.

SCPROD 56 msec. 280msec. 1.0 sec.

905 2 microsec

store

INVMX 1.9 sec. 10.6 sec. 1 min 3.5 sec.

MXPROD 865 msec. 6.2 sec. 42.3 sec.

MXSUM 385 msec. 1.2 sec. 4.2 sec.

SCPROD 96 msec. 481 msec. 1.7 sec.

Page 8

Chapter 4:

Chapter 5:

903

OPTIMISATION

The full package of procedures is provided for the

convenience of the user. In the case of procedures such as

MXCOPY, the main advantage is to save the programmer

the labour of writing out multiple for statements. However,

where the procedure MXCOPY is used 3 or more times, its

use will save program storage space.

The user who is interested in store economy may

easily find improvements to the package. Among the more

obvious ways of reducing store used would be to remove

some or all of the many compalibility tests. In many cases

if these tests are removed but the condition is violated an

Algol system runtime error will be given.

The procedures were translated from the Elliott 503

and 4100 Algol matrix packages with suitable changes for

use on the 903. They will run on the 4100 unchaged.

Very substantial savings in time could be achieved

by converting some of the procedures into SIR code

procedures. In most cases the use of code will also save

program storage space. The compatibility tests could be

expressed in code more elegantly than in Algol.

EXAMPLES

5ak Example 1

Evaluate E:=A* Bt C™

where E and C are 5 x 5 matrices

Aisa5x 10 matrix

and Bisa 10x 5 matrix

A and B are to be read from paper tape and C

is defined by C [i, j] =1+1/ (i + 2* §).

1

EVALUATE;

Comment (The procedures readmx, mxprod, invmx,

mxsum and printmx are edited in at this point)

Begin array a[1:5, 1:10], b[1:10, 1:5];
integer i, js

Page 9

(Issue 1)

903
2.6. 2.

Page 10

(Issue 1)

Comment dis work space;

End

End

for i: = 1 step 1 until 5 do

for jz: = 1 step 1 until 5 do

c[i,j] :=1+1/ (i + 2 * j);

readmx (a); readmx (b);

mxprod (d, a, b); comment D: = A*B;

invmx (c); comment C: = c7}

mxsum (e, c, d); comment E: = A*xB+c7!

printmx (e);

evaluate

matrix package;

A tape for the above program could be made up

by the following edit

IL EVALUATE;

DC;

FL "PROCEDURE" PRINT 2;

FC;

DL "END" MXNEG;

FL "'END' MXPROD;

DL "END" SCPROD;

FL "END" INVMX;

DL "END" MXQUOT;

FL "END" PRINTMX;

DL "END" MXOUT PUT;

IH

@) (Halt code)

The tape produced by this edit is input to

the Algol Translator (Tape 1). This ends with a

halt code and should be followed by input of the

program tape at entry point 9.

903
27 Owen

The program tape starts with:

“BEGIN "ARRAY" Al

and ends with:

"END" MATRIX PACKAGE;

Alternatively, the program could be copied

onto the end of the edited matrix procedures.

5.2 Example 2

Example of output using mxoutput with the

format set to freepoint (5)

ROW/COL 1 2 3 4 5 6 7

1 . 00000 14.000 21.000 28.000 35.000 42.000 49.000

2 . 00000 . 00000 21.000 28.000 35.000 42.000 49. 000

3 . 00000 . 00000 00000 28.000 35.000 42.000 49.000

ROW/COL 8 9 10 11 12 13 14

1 56.000 63.000 70.000 77.000 84.000 91.000 98.000

2 56.000 63.000 70.000 77.000 84.000 91.000 98.000

3 56.000 63.000 70.000 77.000 84.000 91.000 98.000

ROW/COL 15 16 17 18 19 20

1 105.00 112.00 119.00 126.00 133.00 140.00

2 105.00 112.00 119.00 126.00 133.00 140.00

3 105.00 112.00 119.00 126.00 133.00 140.00

END OF MATRIX

Page 11
(Issue 1)

Chapter 6:

Page 12

(Issue 1)

STORE USED

Approximate figures for the store used by each

procedure are given in chapter 2.2

The total store taken by all the procedures is

about 3950, including scalar variables. However;|{ it is
most unlikely that all the procedure will be used in one

program.

